Ir al contenido principal

Funcion Trigonometrica

     FUNCION TRIGONOMETRICA

las funciones trigonometricas f son aquellas que están asociadas a una razón trigonométrica.

Dibujo de las funciones trigonométricas seno, coseno y tangente.

Las razones trigonométricas de un ángulo α son las obtenidas entre los tres lados de un triángulo rectángulo. Es decir, las comparaciones por su cociente de sus tres lados a, b y c.


Existen 6 razones trigonometricas...

Seno


Dibujo del triángulo rectángulo para el cálculo de las razones trigonométricas
El seno de un ángulo α se define como la razón entre el cateto opuesto (a) y la hipotenusa
Fórmula del seno






Gráfica de la función del seno.

La función del seno es periódica de período 360º (2π radianes), por lo que esta sección de la gráfica se repetirá en los diferentes períodos.

  • DominioDominio del seno.
  • CodominioCodominio del seno.
  • Derivada de la función senoDerivada del seno.
  • Integral de la función senoIntegral del seno.

Coseno

Dibujo del triángulo rectángulo para el cálculo de las razones trigonométricas
El coseno de un ángulo α se define como la razón entre el cateto contiguo o cateto adyacente (b) y la hipotenusa (c).
Fórmula del coseno





Gráfica de la función del coseno.

La función del coseno es periódica de período 360º (2π radianes).

  • DominioDominio del coseno.
  • CodominioCodominio del coseno.
  • Derivada de la función cosenoDerivada del coseno.
  • Integral de la función cosenoIntegral del coseno.


Tangente:

Dibujo del triángulo rectángulo para el cálculo de la tangente
La tangente de un ángulo α es la razón entre el cateto opuesto (a) y el cateto contiguo o cateto adyacente (b).
Fórmula de la tangente





Gráfica de la función de la tangente.

La función de la tangente es periódica de período 180º (π radianes).

  • DominioDominio de la tangente. (excepto π/2 + a · π), siendo a un número entero. O, con esta casuística: x ≠ ±π/2; ±3π/2; ±5π/2;…
  • CodominioCodominio de la tangente.
  • Derivada de la función tangenteDerivada de la tangente.
  • Integral de la función tangenteIntegral de la tangente.

Cosecante

Dibujo del triángulo rectángulo para el cálculo de la cosecante.
La cosecante es la razón trigonométrica recíproca del seno, es decir csc α · sen α=1.

La cosecante del ángulo α de un triángulo rectángulo se define como la razón entre la hipotenusa (c) y el cateto opuesto (a).
Fórmula de la cosecante

Gráfica de la función de la cosecante.


La función de la cosecante es periódica de período 360º (2π radianes).

  • DominioDominio de la cosecante. (excepto a · π), siendo a un número entero.
  • CodominioCodominio de la cosecante.
  • Derivada de la función cosecanteDerivada de la cosecante.
  • Integral de la función cosecante:
    Integral de la cosecante.




Secante

Dibujo del triángulo rectángulo para el cálculo de la cosecante.
La secante es la razón trigonométrica recíproca del coseno, es decir sec α · cos α=1.

La secante de un ángulo α de un triángulo rectángulo se define como la razón entre la hipotenusa (c) y el cateto contiguo o cateto adyacente (b).

Fórmula de la secante
Gráfica de la función de la secante.

Cotangente

Dibujo del triángulo rectángulo para el cálculo de la cosecante.
La cotangente es la razón trigonométrica recíproca de la tangente, por lo tanto tan α · cot α=1.

La cotangente de un ángulo α de un triángulo rectángulo se define como la razón entre el cateto contiguo o cateto adyacente (b) y el cateto opuesto (a).
Fórmula de la cotangente

Gráfica de la función de la cotangente.


La función de la cotangente es periódica de período 180º (π radianes).

  • DominioDominio de la cotangente. (excepto a · π), siendo a un número entero.
  • CodominioCodominio de la cotangente.
  • Derivada de la función cotangente:
    Derivada de la cotangente.
  • Integral de la función cotangente:
    Integral de la cotangente.



Comentarios

Entradas más populares de este blog

LEY COSENO

LEY COSENO La  ley de los cosenos  es usada para encontrar las partes faltantes de un triángulo oblicuo (no rectángulo) cuando ya sea las medidas de dos lados y la medida del ángulo incluído son conocidas (LAL) o las longitudes de los tres lados (LLL) son conocidas. En cualquiera de estos casos, es imposible usar la ley de los senos porque no podemos establecer una proporción que pueda resolverse. La ley de los cosenos establece:    c  2  =  a  2  +  b  2  – (2  ab)  cos  C  . Esto se parece al teorema de Pitágoras excepto que para el tercer término y si  C  es un ángulo recto el tercer término es igual 0 porque el coseno de 90° es 0 y se obtiene el teorema de Pitágoras. Así, el teorema de Pitágoras es un caso especial de la ley de los cosenos. La ley de los cosenos también puede establecerse como  b  2  =  a  2  +  c  2  – 2  ac  cos  B  or  a  2  =  b  2  +  c  2  – 2  bc  cos  A  . Ejemplo 1:  Dos lados y el ángulo incluido -LAL Dado a = 11, b = 5 y C = 20°. E

SISTEMA CICLICO

SISTEMA  CÍCLICO En el sistema cíclico el ángulo unidad es el radian (rad) que es un ángulo con vértice en el centro de una circunferencia y cuyos lados abarcan un arco de longitud igual al radio de la circunferencia Se establece que 360°=2π rad. Por lo tanto 1 vuelta (360°)= 2π rad  .5 vuelta (180°) = π rad DE SISTEMA CÍCLICO A GRADOS Y VICEVERSA Se pueden realizar mediante regla de 3 basándonos siempre en que 180° es equivalente a π rad.                    

Funcion Cubica

 Funcion Cubica Una función cúbica (o función de tercer grado) es una función polinómica de grado 3, es decir, que el mayor exponente del polinomio es x elevado a 3 (x3): La representación gráfica de la función cúbica es: Una función cúbica puede tener tres, dos o una raíz. Las raíces de una función son los elementos del dominio tal que su imagen es nula (f(x) = 0). Caracteristicas de la funcion cubica Siendo f(x) = ax3+bx2+cx+d, entonces tenemos que: Dominio: R. Codominio: R